Optical mirror from laser-trapped mesoscopic particles.

نویسندگان

  • Tomasz M Grzegorczyk
  • Johann Rohner
  • Jean-Marc Fournier
چکیده

Trapping of mesoscopic particles by optical forces usually relies on the gradient force, whereby particles are attracted into optical wells formed by landscaping the intensity of an optical field. This is most often achieved by optical Gaussian beams, interference patterns, general phase contrast methods, or other mechanisms. Hence, although the simultaneous trapping of several hundreds of particles can be achieved, these particles remain mostly independent with negligible interaction. Optical matter, however, relies on close packing and binding forces, with fundamentally different electrodynamic properties. In this Letter, we build ensembles of optically bound particles to realize a reflective surface that can be used to image an object or to focus a light beam. To our knowledge, this is the first experimental proof of the creation of a mirror by optical matter, and represents an important step toward the realization of a laser-trapped mirror (LTM) in space. From a theoretical point of view, optically bound close packing requires an exact solver of Maxwell's equations in order to precisely compute the field scattered by the collection of particles. Such rigorous calculations have been developed and are used here to study the focusing and resolving power of an LTM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical cooling of atoms in microtraps by time-delayed reflection

We present a theoretical analysis of a novel scheme for optical cooling of particles that does not in principle require a closed optical transition. A tightly confined laser beam interacting with a trapped particle experiences a phase shift, which upon reflection from a mirror or resonant microstructure produces a time-delayed optical potential for the particle. This leads to a nonconservative ...

متن کامل

0 Cold Trapped Atoms : A Mesoscopic System ∗

The Bose-Einstein condensates recently created in trapped atomic gases are mesoscopic systems, in two senses: (a) Their size fall between macroscopic and microscopic systems; (b) They have a quantum phase that can be manipulated in experiments. We review the theoretical and experimental facts about trapped atomic gases, and give examples that emphasize their mesoscopic characters. One is the dy...

متن کامل

Dynamic axial-position control of a laser-trapped particle by wave-front modification.

The axial position of a laser-trapped particle has been controlled by modification of the wave front by means of a membrane deformable mirror. The mirror gives wave-front modulation in terms of Zernike polynomials. By modulation of the Zernike defocus term we can modulate the particle position under conditions of laser trapping. A polystyrene particle of 1-microm diameter was moved along the op...

متن کامل

Calculation and optical measurement of laser trapping forces on non-spherical particles

Optical trapping, where microscopic particles are trapped and manipulated by light is a powerful and widespread technique, with the single-beam gradient trap (also known as optical tweezers) in use for a large number of biological and other applications. The forces and torques acting on a trapped particle result from the transfer of momentum and angular momentum from the trapping beam to the pa...

متن کامل

Laser-induced rotation and cooling of a trapped microgyroscope in vacuum

Quantum state preparation of mesoscopic objects is a powerful playground for the elucidation of many physical principles. The field of cavity optomechanics aims to create these states through laser cooling and by minimizing state decoherence. Here we demonstrate simultaneous optical trapping and rotation of a birefringent microparticle in vacuum using a circularly polarized trapping laser beam-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 112 2  شماره 

صفحات  -

تاریخ انتشار 2014